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1. INTRODUCTION

One of the important parameters in the design of a shell is the total aerodynamic drag. The total
drag consists of three drag components: the pressure drag or the wave drag (excluding the base),
the viscous drag, and the base drag. The base drag component is a large part of the total drag and
can be as high as 50% or more of the total drag. Of the three drag components, the most difficult
one to predict is the base drag. The base drag depends on the pressure acting on the base.
Therefore, it is necessary to predict the base pressure as accurately as possible.

The ability to compute the base region flow field for projectile configurations using Navier-Stokes
computational techniques has been developed over the past few years."?® Recently, improved
numerical predictions have been obtained using a more advanced zonal upwind flux-split algorithm.*®
This zonal scheme preserves the base corner and allows better modeling of the base region flow.
These studies have included base flows for different base geometries. This capability is very
important for determining aerodynamic coefficient data including the total aerodynamic drag. As
indicated earlier, a number of base flow calculations have been made, and base drag and total drag
have been predicted with reasonable accuracy. However, due to the lack of available data, the
predictive capabilities were not assessed earlier with detailed base pressure distributions, mean flow
velocity components, and turbulence quantities. This is especially true of base flow for axisymmetric
bodies at transonic and supersonic speeds. Recently, experimental measurements have been made
in the base region for supersonic flow over a cylindrical afterbody without base bleed.® The data
included base pressure distribution (along the base), mean flow, and turbulence quantities.
Numerical computations’ were made for this case, and computed results were compared with this
data. The detailed experimental data were critical in validating the computational results, especially
for the turbulence modeling and grid resolution issues.

Figure 1 is a schematic diagram showing the important features of supersonic base flow with
base bleed. The approaching supersonic turbulent boundary layer separates at the base corner, and
the free shear layer region is formed in the wake. The flow expands at the base corner and is
followed by the recompression shock downstream of the base, which realigns the flow. The flow
then redevelops in the trailing wake. In the absence of base bleed, a low-pressure region is formed
immediately downstream of the base, which is characterized by a low-speed recirculating flow region.
Interaction between this recirculating region and the inviscid external flow occurs through the free




shear mixing region. This is the region where turbulence plays an important role. Injection of low-
speed air into the base region displaces the entire recirculation region downstream into the wake.
The bleed flow fills in the near wake region. This, in turn, weakens the recompression shock,
resulting in an increase of base pressure or a reduction in base drag.

The drag reduction due to base bleed at supersonic speeds is of practical importance. The
effect of base bleed or mass injection has been studied experimentally.®*'® These early experiments
involved cold and hot gas injection for cylindrical and boat-tailed afterbodies and clearly showed the
effectiveness of base bleed on base pressure. Most of these experimental investigations were rather
limited in nature and lacked measurements of detailed base pressure and near wake flow field such
as mean flow and turbulence quantities. Such detailed experimental data have been recently
available' for supersonic flow over a cylindrical afterbody with base bleed. This set of eXperimental
data not only provides insight into the details of the fluid dynamic interactions in the near wake but
also serves as a benchmark for validation of computational results. This paper describes the
computational investigation of supersonic base flow with base bleed for the same experimental
model and conditions.

The basic configuration used in this study is a cylindrical afterbody. As mentioned earlier, a
simple composite grid scheme has been used for accurate modeling of the base corner. Numerical
flow field computations have been performed at M= 2.46 and at a 0° angle of attack. Two
turbulence models (an algebraic model and a two-equation model) are used in the base flow region.
All the computations have been performed on the Cray Y-MP supercomputer. Details of the flow field
such as Mach number contours and base pressure distributions are presented. Computed base
pressure distributions are compared with available experimental data for the same conditions and
the same configuration.

2. GOVERNING EQUATIONS AND SOLUTION TECHNIQUE

The complete set of time-dependent, Reynolds-averaged, thin-layer Navier-Stokes equations is
solved numerically to obtain a solution to this problem. The numerical technique used is an implicit,
finite-difference scheme. Although time-dependent calculations are made, the transient flow is not
of primary interest at the present time. The steady flow, which is the desired result, is obtained in
a time asymptotic fashion.



2.1 Governing Equations

The complete set of three-dimensional (3-D), time-dependent, generalized geometry, Reynolds-
averaged, thin-layer, Navier-Stokes equations for general spatial coordinates &, n, and  can be
written as follows:"?

9,9+ 03F+8,G+3,H=Re"3,8, (1)
where
T = t - tlme,
§=8&xy 21 - longitudinal coordinate,
n=nxyzt - circumferential coordinate,
C=04xy 2z - nearlynormal coordinate.

in Equation 1, § contains the dependent variables, and lé, é\, and ﬁ are flux vectors. The thin-
layer approximation is used here, and the viscous terms involving velocity gradients in both the
longitudinal and circumferential directions are neglected. The viscous terms are retained in the
normal direction, Z, and are collected into the vector S. These viscous terms are used everywhere.
However, in the wake or the base region, similar viscous terms are also added in the streamwise
direction. For this computation, the diffusion coefficients p and k contain molecular and turbulent

parts. The turbulent contributions are supplied through either algebraic or a two-equation k-
turbulence model.

2.2 Numerical Technique

The implicit, approximately factored scheme for the thin-layer Navier-Stokes equations using
central differencing in the n and ¢ directions and upwinding in & is written in the following form:




[/ + ha2(ATy" + h&,C” - hRe & d™ M"J - D],

x [I+ hd{(A")" + h5 B" - D;|,1AQ"
) ) ) ) - @)
= - AHB(F ) - FJ1+8{(F )" - FJ1+8,(G" - G,)

+&(H" - H,) - ReT'8,(8" - 8,)} - D(Q" - 4,) ,

where h=Ator (Af)/2 and the free stream base solution is used. Here, 3 is typically a three-point
second-order accurate central difference operator, disa midpoint operator used with the viscous
terms, and the operators 62" and 6{ are backward and forward three-point difference operators. The
flux l/-l has been eigensplit, and the matrices 2\\ é 6 and A') result from local linearization of the
fluxes about the previous time level. Here, J denotes the Jacobian of the coordinate transformation.
Dissipation operators D, and D;are used in the central space differencing directions. The smoothing
terms used in the present study are of the form:

D, 1, = (At)J'1[6259(B)I35 re, 58 Ss}lnd.

Dy, = (At)J"[e,Bp(B)BD + 25¢,5p(B)3]|,J

where
___|®P
| (1+82)P|

and where p(B) is the true spectral radius of B. The idea here is that the fourth difference will be
tuned down near shocks (e.g., as B gets large, the weight on the fourth difference drops down while
the second difference tunes up).




2.3 Boundary Conditions

For simplicity, most of the boundary conditions have been imposed explicitly.> An adiabatic wall
boundary condition is used on the body surface, and the no-slip boundary condition is used at the
wall. The pressure at the wall is calculated by solving a combined momentum equation. Free
stream boundary conditions are used at the inflow boundary as well as at the outer boundary. A
symmetry boundary condition is imposed at the circumferential edges of the grid, while a simple
extrapolation is used at the downstream boundary. A combination of symmetry and extrapolation
boundary condition is used at the center line (axis). Since the free stream flow is supersonic, a
nonreflection boundary condition is used at the outer boundary. The flow field is initially set to free
stream conditions everywhere and then advanced in time until a steady-state solution is obtained.

For the base bleed case, boundary conditions are imposed at the bleed exit which include the
total temperature and total pressure of the bleed gas as well as a mass injection parameter, l. The
amount of bleed or gas injection is usually defined in terms of the mass injection parameter,
| = mi/P= U~ Ao, where mj is the mass flow at the bleed exit and Av is the area at the base. All
dependent flow variables can be determined from these three quantities for the mass injection or

base bleed case. The total pressure and temperature of injected gas are assumed to be constant
at the bleed exit.

2.4 Composite Grid Scheme

In the present work, a simple composite grid scheme has been used where a large single grid is split
into a number of smaller grids so that computations can be performed on each grid separately.®
These grids use the available core memory one grid at a time. The remaining grids are stored on
an external disk storage device. Some of today's supercomputers have a large incore memory to
fit the large single grid. However, for accurate geometric modeling of complex projectile
configurations which include blunt noses, sharp corners, and base cavities, it is also desirable to split
the large database into a few smaller zones. The use of a composite grid scheme requires special
care in storing and fetching the interface boundary data (i.e., the communication between the various
zones). In the present scheme, there is a one-to-one mapping of the grid points at the interface
boundaries. Thus, no interpolations are required. Details of the data storage, data transfer, and




other pertinent information such as metric and differencing accuracy at the interfaces can be found
in the work of Sahu and Steger* and Sahu and Nietubicz.®

2.5 Turbulence Modeling

For the base flow calculations, two turbulence models have been used. The first one is an
algebraic eddy viscosity model (Baldwin-Lomax model). The other one is a two- equation k-¢
turbulence model which is also an eddy viscosity model.

2.5.1 Baldwin-Lomax Model

This model is the one developed by Baldwin and Lomax.*® It is a two-layer model in which an
eddy viscosity is calculated for an inner and an outer region. The inner region follows the Prandti-
Van Driest formulation. In both the inner and outer formulations, the distribution of vorticity is used
to determine the length scales, thereby avoiding the necessity of finding the outer edge of the
boundary layer. For the inner region,

(Ue)inner = p122| wl|, (3)
where

0 =ky[1-exp(-y*/A")]

y'=(puuy)uy,, U o= (1,/0,) ,

and lwl is the absolute magnitude of vorticity. The eddy viscosity for the outer region is given by
(Me)outer = KCcppFwakeFkleb(y) 1 (4)

where F e = Ymax Frnax O Cuk Yimax uﬁ,i,/Fmax, the smaller of the two values. The quantities y,,,, and
F...x are determined from the function F(y) = yw[1 - exp (-y* / A")], where E,,, is the maximum
value of F(y) and y,,., is the value of y at which it occurs. The function Fy,, (¥) is the Klebanoff
intermittency factor. The quantity u;is the difference between the maximum and minimum total
velocity in the profile, and, for boundary layers, the minimum is zero.




The outer formulation can be used in wakes as well as in attached and separated boundary

layers. For free-shear layer flow regions or wakes, the Van Driest damping term [exp(-y* / A")] is
neglected. Aiso, for the base or wake region, the distance y is measured from the center line of
symmetry. It is necessary to specify the following constants: A" = 26, Cep=1.6, Cep = 0.3, Cyy
=0.25, k = 0.4, and K=0.0168. This type of simple model is generally inadequate for complex flows
containing flow separation regions such as base flow since it depends only on local information. The
two-equation model contains less empiricism and allows the flow history to be taken into account.

2.5.2 Two-Equation k-€ Model
The two-equation turbulence model used here is Chien's k- model'* which is similar to that of

Jones and Launder.” In this model, two transport equations are solved for the two variables, k
(turbulent kinetic energy) and e (turbulent dissipation rate).

pgz=_@_[&+p]_a_k}+u,§ﬁ(%+%]

Dt 3X|| o X aX\ aX; oX;
-pe—ZUi2

\ yn

| De 9
‘ °Dt T ax

(ﬂ+p)8_€_
O oX;

€? € _-y*2
- Cp— -2p—=eV'= |
ko (6)

1IJ'kaxj X

e ou oy 9y
3%,

Here, y, is the distance normal to the surface. The coefficients in the k and e equations are given
by

-



¢, = 1.44

NO
I

1.92[1-0.3exp(-R7)]
o,=10, o.=13

¢, = 0.09[1 -exp(-0.01y")] ,

where R;= i/ve. The k- model employs the eddy viscosity concept and relates the turbulent eddy
viscosity to kand € by

W, = g,p(k?/€) . (6)

Following the same procedure used for the mean flow equations, the turbulence field equations are
written in conservation form and then transformed into generalized coordinates.'®

3. MODEL GEOMETRY AND EXPERIMENT

The computational accuracy of a numerical scheme can be established through comparisons
with available experimental data. The model used in the experiment and in the computational study
is shown in Figure 2. It is an axisymmetric cylindrical afterbody which has a diameter of 63.5 mm
and a base bleed jet exit diameter of 25.4 mm. This figure also shows the location of the static
pressure taps where base pressure was measured. The same configuration is used in the numerical
simulations for a direct comparison.

Experimental measurements for this model have been made at the University of lllinois
Supersonic Wind Tunnel'' which was specifically designed for the study of axisymmetric base flows.
The model was tested at a 0° angle of attack, Mach number of 2.46, and Reynolds number of 5.21
x 107 per meter. In addition to measuring the velocity components at a number of selected
longitudinal positions in the wake or base region, the base pressure was measured at 10 positions
along the base. Such detailed base pressure measurements have not been made in the past for the
base bleed condition and are very helpful in the code validation process. The velocity profile is also
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measured at a station upstream of the base, which provides the upstream boundary condition for
base region flow field calculations.

4. RESULTS

Numerical computations have been made for the cylindrical afterbody at a Mach number of 2.46
and at a 0° angle of attack. The three-plane version of the 3-D code was run for the 0° angle of
attack case. Two end planes were used to specify symmetric boundary conditions in the
circumferential plane.

The solution technique requires the discretization of the entire flow region of interest into a
suitable computational grid. The grid outer boundary has been placed 1 diameter away from the
surface of the afterbody. The downstream boundary was placed 10 diameters away from the base.
Since the calculations are in the supersonic regime, the computational outer boundary was placed
close to the body, and a nonreflection boundary condition was used at that boundary. Figure 3
shows an expanded view of the grid in the base region. The surface points on the afterbody and the
base were obtained first. These points were then used as inputs for obtaining the full grid using an
algebraic grid generation program. The full grid is split into two zones, one upstream of the base,
and the other one in the base region or the wake. These grids consist of 22 x 60 and 94 x 119 grid
points, respectively. Figure 3 shows the longitudinal grid clustering near the base corner. Grid
points are also clustered near the afterbody surface to capture the viscous effects in the turbulent
boundary layer. This clustered grid points are spread out downstream of the base in the wake to
capture the free shear layer region. As a part of grid resolution study, two other grids were
considered. One was a coarse grid with half as many grid points, and the other one was a fine grid
consisting of twice as many grid points as the original grid described above. For the 0° angle of
attack case considered, the grid was rotated circumferentially 5° on either side of the midplane. This
provided the three planes needed in the code to use central finite differences in the circumferential
direction. In each case, the solution was marched from free stream conditions everywhere until the
final converged solution was obtained. The results are now presented for both mean and turbulence
quantities. Comparison of the computed results are made with the available experimental data."’

A few qualitative results are presented next. Figures 4a and 4b show the comparison of the
computed Mach number contours with experimentally obtained schlieren photographs of the base




region flow field for | = 0 (no bleed) and | = .01, respectively. Both the experiment and the computed
results show the flow expansion at the base corner and the recompression shock downstream of the
base (coalescence of contour lines). In addition, Figures 4a and 4b show the free shear layer in the
near wake. Although not indicated in Figure 4a, the flow in the near wake is primarily subsonic. For
the zero bleed case, usual wake narrowing down (neck) can be clearly seen in both experimental
and computational results. This is followed by a strong recompression shock wave system. With
base bleed, the expansion at the base weakens, the shear layer angle is decreased, and the
recompression shock is very weak. The widening of the wake with injection (I = .01) seen
experimentally can also be observed in the computed results. The recirculatory flow field in the near
wake for the zero bleed case gets displaced downstream. The computed results shown in Figure
4 were obtained using the two-equation k-e model and the original grid.

Figure 5 shows the velocity profiles at the base bleed exit plane for various mass injection rates.
The mass injection rates selected for the numerical computations were initially based on the
experiment. However, experiment was rerun to provide detailed measurements in the near wake
As it turned out, the injection rates obtained in the experimental data were slightly different from
those used in the computation. Both computed and experimental results show the same trends. The
exit velocity is quite uniform along the bleed exit. As expected, the magnitude of velocity increases
with the increase in the mass injection rate. There is some discrepancy in velocity near the bleed
orifice corner. This is due in part to the grid point distribution in this area. The grid points were not
clustered in this region, since the flow inside the bleed hole, and thus, the boundary layer, is not
modeled. The effect of base bleed on the mean axial velocity along the center line of symmetry is
shown in Figure 6. The computed centerline velocity agrees fairly well with the experimental data
in the near wake for x/D < 3.0. The agreement between the computed and experimental results is
poor in the flow redevelopment region of the wake. This is true of all cases of mass injection rates.

In both experiment and computed results, the bleed exit velocity is small for low injection rates and
results in two stagnation points (forward and rear). The peak reverse velocity along the centerline
decreases with the increase in base bleed rate. As mass injection rate is increased, the bleed exit
velocity increases. The recirculation region in the near wake is reduced and pushed further
downstream. For high injection rates (| =. 02 or higher), reverse velocity does not exist along the
centerline. Figures 7 and 8 show the velocity components in the streamwise and normal directions,
respectively, for a mass injection parameter of | = .01. These velocity profiles are taken at four
longitudinal positions in the wake or the base region (X/D = 0.95, 1.26, 1.67, and 2.04). The stations
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X/D = 0.95 and 1.67 correspond to the locations near the forward and rear stagnation points,
respectively; X/D = 1.26 lies inside the recirculation region and X/D = 2.04 is in the flow
redevelopment region downstream of the rear stagnation point. The computed velocity profiles
obtained using the Baldwin-Lomax algebraic turbulence model and the two-equation k-e model are
compared with the experimental data. Figure 7 shows the comparison of the u (streamwise)
component of velocity. In general, the profiles obtained with the k-e model are in better agreement
with the experiment in the shear layer regions for X/D = 0.95 and X/D = 1.26. The profiles are poorly
predicted by the algebraic model at these two stations. At X/D = 0.95, both turbulence models
predict reverse velocities near the centerline which are larger than the experimental value, although
the k- model prediction is closer to the experiment. The predicted profiles near the centerline agree
better with the experimental data further downstream (X/D = 1.26 and 1.67) inside the reverse flow
region and near the rear stagnation point, especially the k- model prediction. Both models predict
the velocity profiles at X/D = 1.67 and 2.04 fairly well. Figure 8 shows the comparison of the w
(vertical) component of the velocity. This component of velocity is better predicted by the k- model
than the algebraic model in the near wake, especially at X/D = 0.95. The profiles by the algebraic

models are in poor agreement with the experimental data for radial positions greater than half of the
base radius.

Some of the turbulence quantities are presented next. Figure 9 shows the turbulent kinetic
energy profiles at the same longitudinal positions in the wake for the base bleed case, | =. 01. The
computed k profiles are obtained using the two-equation k-e turbulence model. Near the forward
stagnation point (X/D = 0.95) and inside the separated flow region (X/D = 1.26), the peak observed
experimentally is well predicted by the k-e model. Some discrepancy exists between the computed
results and the experimental data for I/R < 0.6. The agreement of the computed profiles, including
the location and magnitude of the peak, with the data is much better near the rear stagnation point
and downstream (X/D = 1.67 and 2.04), especially for the magnitude of the peak value. The
location of the peaks decrease smoothly with increasing axial distances downstream from the base.
Figure 10 shows the turbulent shear stress profiles in the near wake. The computed values obtained
by both the algebraic model and the k- model are compared with the experimental data. In general,
a small improvement can be observed in the predicted values with the k- model over the algebraic
model. Discrepancy exists between the experimentally obtained turbulent shear stress and the
predicted shear stresses with both turbulence models at X/D = 0.95 for I/R < 0.7. The location of
the peak is better predicted by the k- model. The magnitude of the peak is well predicted by both
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models. For the other stations in the near wake, the magnitude of the peaks is predicted well by
both models. As for the location of the peak, the k- model does much better than the algebraic
model. As X/D is increased from 0.95 to 2.04, the location of the peak predicted by the k- model
moves closer to the center line similar to that observed in the experiment. This location of the peak
is underpredicted by the algebraic model.

Of particular interest is the accurate prediction or determination of base pressure and, hence,
base drag. Figure 11 shows the base pressure distribution (along the base) for a mass injection
rate, | =.005. The base pressures predicted by both the algebraic model and the two-equation k-
turbulence model are compared with the experimental data.'" The experimental data are shown in
dark circles, and the computed results are shown in fines. Here, Z/D = 0.0 corresponds to the center
line of symmetry, and Z/D = 0.5 corresponds to the base corner. The base pressures predicted by
both algebraic and k-e turbulence models show almost no change in the base pressure distribution
which can also be observed in the experimental data. The base pressure is, however, poorly
predicted by the algebraic model. A much improved base pressure distribution is predicted by the
k-€ model, and its agreement with the measured base pressure is quite good. The algebraic model
prediction shows a slight variation near the base corner and the bleed exit corner. Figure 12 shows
the base pressure distributionvfor an injection rate of | = 0.01. The computed base pressures
obtained by both turbulence models are compared with the experimental data. Again the k- model
predicted base pressure agrees well with the data, and the algebraic model prediction is poor. The
grid sensitivity is examined in this figure using the results obtained by the k-¢ model on three
different grids (original medium, coarse, and fine). The coarse grid consists of half as many and the
fine grid twice as many grid points as the original medium grid. The grid point distribution near the
base also differs between these three grids. The y* values for these grids were .4, 1.4, and 8,
respectively, for the fine, medium, and coarse grids. The difference in the computed base pressures
obtained using the three grids is very small. This implies that the computed solution is grid
independent, in at least as far as the base pressure is concerned. The base pressure comparison
for a higher base bleed rate (I = 0.028) is shown in Figure 13. The three grids again have very
similar results in base pressure with the k- model. The base pressure distribution for the k- model
is shown here for the medium grid. The predicted base pressure with the k- mode! agrees better
with the experimental data than that predicted by the algebraic model.
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The effect of base bleed on base pressure is shown in Figure 14 as a function of mass injection
parameter. The computed average base pressures predicted by both the algebraic and the k-¢
model are compared with the experimental data. The algebraic turbulence mode! underpredicts the
average base pressure for small mass injection rates. A much better average base pressure is
predicted by the k-e model, and its agreement with the measured average base pressure is quite
good. The base pressure increases with the increase in the injection rate for low injection rates.
This is the region where the base bleed is effective in increasing the base pressure and thereby
reducing the base drag. The increase in base pressure with increasing injection rates occurs until
the optimum bleed rate is reached. This optimum injection rate is approximately 0.015 as evidenced
from the experimental data. The peak predicted by k- model agrees well the data. The peak
predicted by the algebraic model is near 0.02 and is not in good agreement with the data. With
further increase in the injection rate from its optimUm, the base pressure decreases, as evidenced
by both experimental data and computed results.

5. CONCLUDING REMARKS

A zonal, implicit, time-marching Navier-Stokes computational technique has been used to compute
the turbulent supersonic base flow over a cylindrical afterbody with base bleed. Flow field
computations have been performed at M, = 2.46 and at a 0° angle of attack. Two eddy viscosity
turbulence models (an algebraic and a two-equation k-€) have been used to provide the turbulence
closure. The k- equations are solved using an implicit algorithm, and calculations with the k-¢
model are extended up to the wall.

Numerical results show the details of the flow field in terms of Mach number contours.
Comparison of both the mean and turbulence quantities have been made with the availabie
experimental data. The algebraic turbulence model predicts the mean velocity components poorly
in the wake. In general, the velocity components predicted by the two-equation k- model are in
better agreement with the experimental data than the algebraic model. Small discrepancy exists
between the predicted turbulent shear stress and the experiment for both algebraic and k-¢
turbulence models. An improvement in the predicted location and magnitude of the peak in shear
stress is found with the k-e model. Computed base pressure distributions have been compared with
the measured base pressures. The base pressures are underpredicted by the algebraic model for

13



different injection rates. The predicted base pressures for these injection rates with the k-e model
are found to be in good agreement with the experimental measured base pressures.
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Figure 4. Computed Mach Contours and Experimental Schlieren Photograph, M. = 2.48,
a=0,a1=0.0,b) I =0.01.
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